d88尊龙人生就是博

外公的身子一半干一半湿是因为伞倾斜到我这边,他的身子一半暴露在雨中,被雨淋湿了。

  • 博客访问: 724993
  • 博文数量: 330
  • 用 户 组: 普通用户
  • 注册时间:2019-07-18 08:47:37
  • 认证徽章:
个人简介

第四单元发展社会主义市场经济;;考点突破二:市场调节固有的弊端;考点突破三:整顿和规范市场秩序;如何规范市场秩序;;热点链接:我国创新和完善宏观调控方式,先后提出区间调控、定向调控精准调控、相机调控,促进经济社会发展。

文章分类

全部博文(212)

文章存档

2015年(574)

2014年(83)

2013年(843)

2012年(374)

订阅

分类: 中新网

d88尊龙人生就是博,PAGE3.课后篇巩固探究                A组1.已知某线性规划问题中的目标函数为z=3x-y,若将其看成直线方程,则z的几何意义是(  )A.该直线的截距B.该直线的纵截距C.该直线的纵截距的相反数D.该直线的横截距解析由z=3x-y,得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.答案C2.目标函数z=x-y在2x-yA.(0,1)B.(-1,-1)C.(1,0)解析可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=,y=时,z=0.排除选项A,B,D,故选C.答案C3.若变量x,y满足约束条件x+y≤3,x-y≥-有最大值无最小值有最小值无最大值的最小值是的最大值是10解析由z=4x+2y,得y=-2x+.作出不等式组对应的平面区域,如图阴影部分所示.平移直线y=-2x,当直线y=-2x+经过点B(0,1)时,直线y=-2x+在y轴上的截距最小,此时z最小,且zmin=2.当直线y=-2x+经过点C(2,1)时,直线y=-2x+在y轴上的截距最大,此时z最大,且zmax=4×2+2×1=10.故选D.答案D4.若直线y=2x上存在点(x,y)满足约束条件x+y-3≤0,A.-解析满足约束条件的平面区域如图中的阴影部分所示,由y=2x,x+y-3=0得交点P(1,2).答案B5.已知实数x,y满足约束条件x-y+4≥0,x+y解析因为z=2x+y,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y的最小值是-2.答案-26.已知变量x,y满足2x-y≤0,解析作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A处取得最大值.易知A(1,2),故zmax=1+2-2=1.答案17.铁矿石A和B的含铁率a、冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:ab/万吨c/百万元A50%13B70%某冶炼厂至少要生产万吨的铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为     百万元.解析设需购买铁矿石Ax万吨,铁矿石By万吨,购买费用为z,则根据题意得到的约束条件为x≥0,y≥0,+≥,x+≤2,目标函数为z=3x+答案158.导学号04994076已知S为平面上以A(3,-1),B(-1,1),C(1,3)为顶点的三角形区域(含三角形内部及边界).若点(x,y)在区域S上移动.(1)求z=3x-2y的最值;(2)求z=y-x的最大值,并指出其最优解.解(1)z=3x-2y可化为y=x-z2=32x+b,故求z的最大值、最小值,相当于求直线y=x+b在y轴上的截距b的最小值、最大值,即b①如图①,平移直线y=x,当y=x+b经过点B时,bmax=,此时zmin=-2b=-5;当y=x+b经过点A时,bmin=-112,此时zmax=-2b=11.故z=3x-2y的最大值为11,最小值为-5(2)z=y-x可化为y=x+z,故求z的最大值,相当于求直线y=x+z在y轴上的截距z的最大值.如图②,平行移动直线y=x,当直线y=x+z与直线BC重合时,zmax=2,此时线段BC上任一点的坐标都是最优解.②9.甜柚和脐橙是赣州地区的两大水果特产,一农民有山地20亩,根据往年经验,若种脐橙,则每年每亩平均产量为1000千克;若种甜柚,则每年每亩平均产量为1500千克.已知脐橙成本每年每亩4000元,甜柚成本较高,每年每亩12000元,且脐橙每千克卖6元,甜柚每千克卖10元.现该农民有120000元,那么两种水果的种植面积分别为多少,才能获得最大收益解设该农民种x亩脐橙,y亩甜柚时,能获得利润z元.则z=(1000×6-4000)x+(1500×10-12000)y=2000x+3000y,其中x,y满足条件x+y当直线y=-x+z3000经过点B组                1.若变量x,y满足约束条件x+y≤8,2y-x≤4,x≥0,解析画出可行域,如图阴影部分所示.由图可知,当直线y=x5+z5经过点A时,z有最大值;经过点B时,z有最小值.联立方程组x+y对x+y=8,令y=0,则x=8,即B(8,0),所以a=5×4-4=16,b=5×0-8=-8,则a-b=16-(-8《流星花园》自7月9日开播以来,在收视维稳、口碑节节高升的同时,还凭借励志主题和青春正能量引爆暑期档。利来国际老牌博彩曾与徐志摩、闻一多创办新月书社,主编《新月》月刊。 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限

 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数指出陶诗的思想主要是道家,有些谈到孔子的,也把他道家化了。利来国际官方网站一、质量安全“十严禁”红线安监总局《隧道施工安全九条规定》(安监总管二〔2014〕104号)第四条规定,必须落实超前水文地质探测预报各项规定,监控量(探)测数据超标立即停工撤人,严禁冒险施工作业。 二元一次不等式(组)与平面区域课后篇巩固探究                A组1.若不等式Ax+By+50表示的平面区域不包括点(2,4),且k=A+2B,则k的取值范围是(  )≥-≤-解析由于不等式Ax+By+50表示的平面区域不包括点(2,4),所以2A+4B+5≥0,于是A+2B≥-,即k≥答案A2.图中阴影部分表示的区域对应的二元一次不等式组为(  )++y-解析取原点O(0,0)检验,它满足x+y-1≤0,故异侧点应满足x+y-1≥0,排除B,D.点O的坐标满足x-2y+2≥0,排除C.故选A.答案A3.若点P14,a在0≤,,3解析由题意,知12≤a≤1答案A4.不等式(x+2y-2)(x-y+1)≥0表示的平面区域是(  )解析不等式(x+2y-2)(x-y+1)≥0等价于x+2y答案A5.在平面直角坐标系中,若不等式组x+y-1≥0,x-A.-解析图中的阴影部分即为满足x-1≤0与x+y-1≥0的平面区域,而直线ax-y+1=0恒过点(0,1),故可看作直线绕点(0,1)旋转.当a=-5时,满足题意的平面区域不是一个封闭区域;当a=1时,满足题意的平面区域的面积为1;当a=2时,满足题意的平面区域的面积为;当a=3时,满足题意的平面区域的面积为2.故选D.答案D6.不等式组2x-y解析该不等式组表示的平面区域是一个直角三角形及其内部,其面积等于×3×6=9.答案97.若点(1,2)与点(-3,4)在直线x+y+a=0的两侧,则实数a的取值范围是     .解析由题意,得(1+2+a)(-3+4+a)0,解得-3a-1.故实数a的取值范围是(-3,-1).答案(-3,-1)8.若不等式组x-y≥0,2解析不等式组x-y≥0,2x+y≤2,y≥0表示的平面区域如图中的阴影部分所示,画出直线x+y=0,并将其向右上方平行移动,直至直线过点(1,0),均满足题意,此时0a≤1;将其再向右上方平移,原不等式组所表示的平面区域就不能构成三角形了,直至直线经过点A2答案0a≤1或a≥9.画出以A(3,-1),B(-1,1),C(1,3)为顶点的△ABC的区域(包括边界),并写出该区域所表示的二元一次不等式组.解如图所示,直线AB,BC,CA所围成的区域就是所要画的△ABC的区域,其中直线AB,BC,CA的方程分别为x+2y-1=0,x-y+2=0,2x+y-5=0.在△ABC内取一点P(1,1),将其代入x+2y-1,得1+2×1-1=2代入x-y+2,得1-1+2代入2x+y-5,得2×1+1-50.又所画区域包括边界,所以该区域所表示的二元一次不等式组为10.导学号04994072在平面直角坐标系中,求不等式组y≥x-解原不等式组可化为y上述不等式组表示的平面区域如图阴影部分所示,则△ABC的面积即为所求.易知点B的坐标为12,-12,点C的坐标为(所以S△ABC=S△ADC+S△ADB=×2×1+×2×12B组1.不等式(x-2y+1)(x+y-3)≤0在直角坐标平面内表示的区域(阴影部分)是下列图形中的(  )解析∵(x-2y+1)(x+y-3)≤0,∴x-2答案C2.二元一次不等式组解析不等式组表示的平面区域如图中阴影部分所示,易知图中阴影部分有4个整点,分别是(0,0),(0,-1),(1,-1),(2,-2),故选B.答案B3.若不等式组x-y+5≥0,yA.(-∞,5)B.[7,+∞)C.[5,7)D.(-∞,5)∪[7,+∞)解析作出不等式组x-y+5≥0,0≤x答案A4.如图,四条直线x+y-2=0,x-y-1=0,x+2y+2=0,3x-y+3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组       表示.解析点(0,0)在该平面区域内,点(0,0)和平面区域在直线x+y-2=0的同侧,把(0,0)代入x+y-2,得0+0-20,所以对应的不等式为x+y-20.同理可得其他三个相应的不等式为x+2y+20,3x-y+30,x-y-10.故所求不等式组为3答案35.若直线y=kx+1将不等式组x-y+2≥0,x解析不等式组表示的平面区域如图中阴影部分所示,△ABC是等腰直角三角形,且BC⊥x轴,A(-1,1).直线y=kx+1经过点(0,1),要使直线将△ABC的面积等分,则k=0.答案06.画出不等式|x|+|y|≤1

阅读(884) | 评论(193) | 转发(752) |

上一篇:尊龙人生就是博手机版

下一篇:d88尊龙

给主人留下些什么吧!~~

徐观国2019-07-18

王军贤二,对于司经常性客户单位井下特种作业处和办理结算业务的物资供应处的基本人员结构和业务操作程序基本掌握,可以单独完成领导交代的工作。

PAGE第一章导数及其应用单元检测(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若,则f′(x0)等于(  ).A.B.C.1D.-12.等于(  ).A.-2ln2B.2ln2C.-ln2D.3.若对于任意x,有f′(x)=4x3,f(1)=3,则此函数的解析式为(  ).A.f(x)=x4-1B.f(x)=x4-2C.f(x)=x4+1D.f(x)=x4+24.抛物线在点Q(2,1)处的切线方程为(  ).A.-x+y+1=0B.x+y-3=0C.x-y+1=0D.x+y-1=05.函数f(x)=x3-2x+3的图象在x=1处的切线与圆x2+y2=8的位置关系是(  ).A.相切B.相交且过圆心C.相交但不过圆心D.相离6.若(2x-3x2)dx=0,则k等于(  ).A.0B.1C.0或1D.7.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为(  ).A.-1<a<2B.-3<a<6C.a<-1或a>2D.a<-3或a>68.函数f(x)的图象如图所示,下列数值排序正确的是(  ).A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(2)<f′(3)9.已知点P在曲线上,α为曲线在点P处的切线的倾斜角,则α的取值范围是(  ).A.B.C.D.10.若曲线在点(a,)处的切线与两个坐标轴围成的三角形的面积为18,则a等于(  ).A.64B.32C.16D.8二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.经过点(2,0)且与曲线相切的直线方程为____________.12.三次函数f(x),当x=1时有极大值4,当x=3时有极小值0,且函数图象过原点,则f(x)=__________.13.在区间上,函数f(x)=x2+px+q与在同一点处取得相同的极小值,那么函数f(x)在上的最大值为__________.14.函数y=x2(x>0)的图象在点(ak,)处的切线与x轴交点的横坐标为ak+1,其中k∈N+,若a1=16,则a1+a3+a5的值是________.15.下列四个命题中正确的命题的个数为________.①若,则f′(0)=0;②若函数f(x)=2x2+1图象上与点(1,3)邻近的一点为(1+Δx,3+Δy),则;③加速度是动点位移函数s(t)对时间t的导数;④曲线y=x3在(0,0)处没有切线.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)求由曲线y=2x-x2,y=2x2-4x所围成的封闭图形的面积.17.(15分)已知函数f(x)=x3+ax2+bx+c在与x=1时都取得极值.(1)求a,b的值及函数f(x)的单调区间;(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围. 参考答案1.答案:D 原等式可化为=-f′(x0)=1,因此f′(x0)=-答案:D =ln4-ln2=答案:D f′(x)=4x3,∴f(x)=x4+k.又f(1)=3,∴k=2,∴f(x)=x4+答案:A ,∴,又切线过点Q(2,1),∴切线方程为y-1=x-2,即-x+y-1=答案:C 切线方程为x-y+1=0,圆心到直线的距离为,所以直线与圆相交但不过圆心.6.答案:C 因为(x2-x3)′=2x-3x2,所以(2x-3x2)dx=(x2-x3)=k2-k3=0.所以k=0或k=答案:D f′(x)=3x2+2ax+a+6,因为f(x)既有极大值又有极小值,所以Δ=4a2-4×3×(a即a2-3a-18>0.解得a>6或a8.答案:B f′(2),f′(3)是x分别为2,3时对应图象上点的切线的斜率,f(3)-f(2)=,∴f(3)-f(2)是图象上x为2和3对应两点连线的斜率,故选答案:D ∵,∴-1≤y′<0,即曲线在点P处的切线的斜率-1≤k<0,∴-1≤tanα<0,又α[0,π),∴π≤α<π.10.答案:A ,∴切线斜率,切线方程是(x-a),令x=0,得,令

万鹏飞2019-07-18 08:47:37

下面,先学习**党委文件《关于召开*****民主生活会的通知》(**[201*]号文)(读文件)按照民主生活会的程序,我们事先于**月*日通过座谈广泛征求了党内外群众的意见,现把情况通报一下。

唐晓菲2019-07-18 08:47:37

就连表演完毕和其他明星选手现场连线时,秦岚也毫不犹豫选择了董洁:“我想连线一下董洁,因为我很欣赏她,跟她也最熟。,曹冲从小聪明仁爱,与众不同,深受曹操喜爱。。条款规定,隧道衬砌的厚度严禁小于设计厚度。。

顾静2019-07-18 08:47:37

复退军人个人工作总结个人总结,就是把一个时间段的个人情况进行一次全面系统的总检查、总评价、总分析、总研究,分析成绩、不足、经验等。,访问者访问本网站的行为以及通过各类方式利用本网站的行为,都将被视作已阅读、理解并同意本声明的全部内容。。其三是在工作作风上存在差距一是在”快”字的体现上还不够,风风火火、雷厉风行干事业的劲头还不足,只争朝夕、”任务不过夜”的要求还未达到,工作效率还需提高;二是在”深”字的体现上还不够,没有做到经常深入窗口,深入实际,特别是与同志们谈心交流少,对同志们的困难和需要了解少,超前服务、及时服务、细致服务的工作还不到位;三是在”严”字的体现上还不够,高标准、严要求、高质量的意识还不够强;四是在”实”字的体现上还不够;工作抓细、抓实、抓具体和”一竿子插到底”的实干精神还不够强。。

三宅淳一2019-07-18 08:47:37

C考点二 人口增长模式及其转变3.(2013·高考广东卷)下表为四个国家的主要人口指标。,这些是不少培训机构在推介课程时都会拿出来的两个理由。。免责声明访问者在接受本网站服务之前,请务必仔细阅读本声明。。

陈慎公妫圉戎2019-07-18 08:47:37

三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。,;这是一个漫长的历程,它们会将自己已经弯曲无用但却象征威仪的喙狠命的砸向岩石,十下、二十下、一百下、两百下,直至整个喙脱落.;然后裸露着伤口,静静忍耐,慢慢的等待重新长出新喙;;当新喙足够坚利时开始用喙啄去爪上的厚茧,一块一块的啄取,持续耐心的雕琢,直到把厚重的脚掌雕琢成一双利爪。。这主要是因为它能增加大脑中使人愉悦的5-羟色胺物质的含量。。

评论热议
请登录后评论。

登录 注册

利来国际官网 利来国际公司 利来娱乐国际ag旗舰厅 利来国际旗舰版 w66.cum
利来国际最给利的老牌 利来国际w66客服 利来国际w66.com 利来国际备用 利来国际备用
利来国际ag旗舰厅app 利来娱乐国际最给利老牌网站是什么 利来国际官网 利来国际w66备用 利来娱乐网址
w66.com 利来国际官网 利来ag 利来娱乐w66
柳林县| 太原市| 清镇市| 荔波县| 外汇| 饶阳县| 宁都县| 济南市| 吉安县| 罗甸县| 英超| 镇宁| 玛纳斯县| 康定县| 东安县| 新平| 新河县| 广丰县| 兰州市| 江都市| 江都市| 大竹县| 日照市| 金山区| 久治县| 岳阳县| 观塘区| 新沂市| 利津县| 广宁县| 南郑县| 永年县| 盱眙县| 科尔| 水城县| 张家港市| 湘阴县| 大埔区| 句容市| 水城县| 陕西省| http://m.56654612.cn http://m.77658281.cn http://m.16299860.cn http://m.72000926.cn http://m.13911116.cn http://m.32471291.cn